
 
 

Chaotic coordinates for LHD 
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The geometry and chaotic structure of B is fundamental: 
→ geometry             (e.g. curvature, shear,                       ) affects stability, confinement, . . 

→ chaotic structure (e.g. flux surfaces, chaotic fieldlines,) affects stability, confinement, . . 

 

 

Straight fieldline coordinates 

(i) are extremely useful, and  

(ii) can be constructed on the invariant sets  
(this includes the “rational” periodic fieldlines, and the “irrational” KAM surfaces & cantori). 
 

“Chaotic coordinates” are based on a selection of “almost-invariant” 

quadratic-flux minimizing (QFM) surfaces. 
→ QFM surfaces pass through the islands and “capture’’ the remnant invariant sets. 

 

The fractal structure of B is absorbed into the coordinates; 
→ the flux surfaces are straight and the islands are “square”. 

Goal: a robust, fast construction of “magnetic” 

coordinates adapted to the invariant structures of  

non-integrable magnetic fields. 

NON-INTEGRABLE FIELDS ARE GENERIC; 

EXISTENCE OF ISLANDS & CHAOS AFFECTS ALL AREAS OF PLASMA CONFINEMENT ! 



Mathematical Preliminary: Toroidal Coordinates 
The magnetic field is usually given in cylindrical coordinates; 

arbitrary, toroidal coordinates are introduced.  
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Mathematical Preliminary: Vector Potential 
A magnetic vector potential, in a suitable gauge,  

is quickly determined by radial integration. 



Physics Preliminary: Magnetic Fieldline Action 
The action is the line integral, along an arbitrary curve, 

of the vector potential.  

 

Seems crude; but, the trigonometric integrals are computed analytically,  i.e. fast; 

Numerically, a curve is represented  as piecewise-constant, piecewise-linear. 

and, coordinates will be constructed in 

which the periodic fieldlines are straight. 



Lagrangian integration construction: 

QFM surfaces are families of extremal curves of the 

constrained-area action integral. 



ρ  

poloidal angle,  

0. Usually, there are only the “stable” periodic fieldline and the unstable periodic fieldline, 

At each poloidal angle, compute radial “error” field 

that must be subtracted from B to create a periodic 

curve, and so create a rational, pseudo flux surface. 

pseudo fieldlines 

true fieldlines 
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Chaos Preliminary: The fractal structure of chaos is 

related to the structure of rationals and irrationals. 

 THE FAREY TREE; 
or, according to Wikipedia, 

THE STERN–BROCOT TREE. 
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510  iterations 

“noble” 

cantori 
(black dots) 

KAM surface 

 

Cantor set 

 

complete barrier 

partial barrier 

 KAM surfaces are closed, toroidal surfaces  

     that stop radial field line transport 

       

 Cantori have “gaps” that fieldlines can pass through; 

     however, cantori can severely restrict radial transport 

 

 Example: all flux surfaces destroyed by chaos, 

     but even after 100 000 transits around torus 

     the fieldlines don’t get past cantori ! 

 

 Regions of chaotic fields can provide some  

     confinement because of the cantori partial barriers. 
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   gap     

Irrational “KAM” surfaces break into cantori when 

perturbation exceeds critical value. 

Both KAM surfaces and cantori restrict transport. 



Large Helical Device (LHD): 

low order islands near edge 

create chaotic fieldlines. 

Z 

R 

(10,6) 

(10,7) 

(10,5) 

The magnetic field is provided by HINT2, 
(but this calculation is for the standard vacuum configuration.) 

 

A  selection of QFM surfaces is constructed, 
shown with black lines, with periodicities: 

             (10,23), (10,22), (10,21), . . . (near axis) 

    . . . ,  (10,9), (10,8), (10,7), (10,6), (near edge) 

 

Following slides will concentrate on edge region 

between the (10,9), (10,8), (10,7), (10,6) and (10,5) islands. 
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1230/827 

1440/953 
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1230/704 
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1310/710 

1440/775 
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850/443 

Near the edge, there is a fractal mix of low-order 

islands, high-order islands, KAM surfaces, cantori, etc 



Step One: construct a set of high-order QFM surfaces. 

(10,6) 

(10,7) 

(20,13) 

(30,19) 

(30,20) 

level 1 

level 2 

level 3 

Step Two: use these surfaces as coordinate surfaces . . 

. 

QFM surfaces that lie close to  

low order separatrices 
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Each ordered pair of rationals 

defines a noble irrational 

Poincaré 

plot. 

 

 

 

 
Coordinates 

constructed 

by interpolation 

between 

QFM surfaces; 

 

flux surfaces 

are straight. 
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Islands become 

square. 
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Edge of  

confinement 

region is  

not a single,  

sharp barrier; 

 
but instead 

a hierarchy of 

 

i. islands, 

ii. KAM, and 

iii. cantori. 

 

boundary  
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Backup slides: 

 
 



Magnetic flux surfaces are required for good 

confinement; but 3D effects create “magnetic 

islands’’, and island overlap creates chaos.  



The construction of extremal curves of the action 

can be generalized to the construction of 

extremizing surfaces of the quadratic-flux. 



The action gradient, ,  is constant along the pseudo 

fieldlines; construct Quadratic Flux Minimzing (QFM) 

surfaces by pseudo fieldline (local) integration. 



Ghost surfaces, another class of almost-invariant 

surface, are defined by an action-gradient flow 

between the action minimax and minimizing fieldline. 



Ghost surfaces are (almost) indistinguishable from 

QFM surfaces; can redefine poloidal angle (straight 

pseudo fieldline) to unify ghost surfaces with QFMs. 



hot 

cold 

particle “knocked” 

onto nearby field line 

isotherm ghost-surface ghost-surface 

Isotherms of the steady state solution to the 

anisotropic diffusion coincide with ghost surfaces; 

analytic, 1-D solution is possible.  



1. Transport  along  the  magnetic field  is unrestricted 
→ consider parallel random walk,  with long steps collisional mean free path 

 

2. Transport  across the magnetic field is very  small 
→consider perpendicular random walk with short steps Larmor radius                                                            

 

3. Anisotropic diffusion balance 

 

4. Compare solution of numerical calculation to ghost-surfaces 
                                                                                                                                                          

 

5. The temperature adapts to KAM surfaces,cantori, 

     and ghost-surfaces! 

         i.e. T=T(s), where s=const. is a ghost-surface 

 

       from T=T(s,,) to T=T(s) is a fantastic simplification, allows analytic solution 

Chaotic coordinates simplify anisotropic transport 
 

The temperature is constant on ghost surfaces, T=T(s) 

hot 

cold 
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Temperature contours and ghost-surfaces for chaotic magnetic fields 

S.R. Hudson et al.,  Physical Review Letters, 100:095001, 2008 

Invited talk 22nd IAEA Fusion Energy Conference, 2008 

Invited talk 17th International Stellarator, Heliotron Workshop, 2009 

An expression for the temperature gradient in chaotic fields 

S.R. Hudson,  Physics of Plasmas, 16:100701, 2009 
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particle “knocked” 

onto nearby field line 

212 ×212 = 4096 ×4096 grid points 

(to resolve small structures) 

isotherm ghost-surface ghost-surface 



The “upward” flux = “downward” flux across a 

toroidal surface passing through an island chain can be 

computed. 

ρ  

poloidal angle, ϑ 

upward 

flux 

downward 

flux 



super-critical 

near-critical 

sub-critical 

Greene’s residue criterion: the existence of an 

irrational flux surface is determined by the stability of 

closely-approximating periodic orbits. 



FLUX FAREY TREE 

The Flux Farey-tree shows the flux across the rational 

surfaces; the importance of each of the hierarchy of 

partial barriers can be quantified. 
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To illustrate, we examine  

the standard configuration of LHD 
 

The initial coordinates are axisymmetric, circular cross section,         
R = 3.63 + ρ 0.9 cosϑ 

Z =             ρ 0.9 sinϑ               which are not a good approximation to flux coordinates! 
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Poincaré plot in cylindrical coordinates Poincaré plot in toroidal coordinates 



We construct coordinates that better approximate 

straight-field line flux coordinates,  
by constructing a set of rational, almost-invariant surfaces, e.g. the (1,1), (1,2) surfaces 

838 / 841 

(1,1) 

A Fourier representation of the (1,1) rational surface is constructed, 

R = R(α,ζ) = ∑ Rm,n cos(m α - n ζ) 

Z = Z(α,ζ) = ∑ Zm,n sin(m α - n ζ),                 where α is a straight field line angle 
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Updated coordinates: 

the (1,1) surface is used as a coordinate surface. 
 

The updated coordinates are a better approximation to straight-field line flux 

coordinates, and the flux surfaces are (almost) flat 
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Now include the (1,2) rational surface 
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Updated coordinates: 

the (1,1) surface is used as a coordinate surface 

the (1,2) surface is used as a coordinate surface 
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(1,1) 
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Now include the (2,3) rational surface 

 
Note that the (1,1) and (1,2) surfaces have previously been constructed 

and are used as coordinate surfaces, and so these surfaces are flat. 
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Updated Coordinates: 
the (1,1), (2,3) & (1,2) surfaces are used as coordinate surfaces 
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New Coordinates, the (10,9) surface is used as the coordinate boundary 

                              the (  1,1) surface is used as  a   coordinate surface 

                              the (  2,3) surface is used as  a   coordinate surface 

                              the (  1,2) surface is used as  a   coordinate surface Poincare plot 

(1,1) 

(2,3) 

(1,2) 

(10,9) 

cylindrical  R 

cy
li

n
d

ri
ca

l 
 Z

 

poloidal angle, ϑ 



cy
li

n
d

ri
ca

l 
 Z

 

(10,9) 

(1,1) 

(2,3) 

(1,2) 

(10,8) 

cylindrical  R 

cy
li

n
d

ri
ca

l 
 Z

 

poloidal angle, ϑ 



(10,8) 

(10,9) 
(1,1) 

(2,3) 

(1,2) 

cylindrical  R 

cy
li

n
d

ri
ca

l 
 Z

 

poloidal angle, ϑ 



(10,7) 

(10,8) 

(10,9) 

(1,1) 

(2,3) 

(1,2) 

Straight field line coordinates can be constructed over the 

domain where invariant flux surfaces exist 
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Straight field line coordinates can be constructed over the 

domain where invariant flux surfaces exist 

Near the plasma edge, there are magnetic islands, chaotic field lines. 

Lets take a closer look . . . . . 
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Now, examine the “edge” . . . .  
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Near the plasma edge,  

there are magnetic islands and field-line chaos 
 
But this is no problem. There is no change to the algorithm! 

The rational, almost-invariant surfaces can still be constructed. 

The quadratic-flux minimizing surfaces ≈ ghost-surfaces pass through the island chains, 
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Now, lets look for the ethereal, last closed flux surface. 
 
(from dictionary.reference.com) 

e·the·re·al   [ih-theer-ee-uhl] 

Adjective 

1.light, airy, or tenuous: an ethereal world created through the poetic imagination. 

2.extremely delicate or refined: ethereal beauty. 

3.heavenly or celestial: gone to his ethereal home. 

4.of or pertaining to the upper regions of space. 
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Perhaps the last flux 

surface is in here 

(10,7) (10,6) 

(20,13) 

(30,20) (30,19) 

(40,27) (50,33) 
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Hereafter, will not Fourier decompose the almost-invariant surfaces and use them as coordinate surfaces. 

This is because they become quite deformed and can be very close together, 

 and the simple-minded piecewise cubic method fails to provide interpolated coordinate surfaces that do not intersect. 
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ρ=0.962425 

ρ=0.962810 

(130,85) 

(90,59) 

(290,190) 

(200,131) 

(310,203) 

(110,72) 

(240,157) 

Δψ 

 

 

4.10-4 

(350,229) 

(420,275) 

ϑ=3.11705                                                                                                        ϑ=3.16614 

locally most noble (110 γ +420)/(72 γ +275) =1.5274230155…   

locally most noble (110γ+350)/(72 γ +29) =1.5281797735…   



local minimal flux 

local minimal flux 

local minimal flux 
(10,6) 

(10,7) 

To find the significant barriers to field line transport, 

construct a hierarchy of high-order surfaces, 

and compute the upward flux 



In chaotic coordinates, the temperature becomes a surface function, T=T(s), 

where s labels invariant (flux) surfaces or almost-invariant surfaces. 

 
If T=T(s), the anisotropic diffusion equation can be solved analytically, 

 

where c is a constant, and 

                           

                            is related to the quadratic-flux across an invariant or almost-invariant surface, 

 

                              is a geometric coefficient. 

The construction of chaotic coordinates simplifies anisotropic diffusion 

particle “knocked” 

onto nearby field line 

An expression for the temperature gradient in chaotic fields 

S.R. Hudson, Physics of Plasmas, 16:010701, 2009 

Temperature contours and ghost-surfaces for chaotic magnetic fields 

S.R.Hudson and J.Breslau 

Physical Review Letters, 100:095001, 2008 

When the upward-flux is sufficiently small,  
so that the parallel diffusion across an almost-invariant surface is comparable to the perpendicular diffusion,  

the plasma cannot distinguish between a perfect invariant surface and an almost invariant surface 



Chaotic coordinates “straighten out” chaos 

Poincaré plot of chaotic field 
(in action-angle coordinates of unperturbed field) 

Poincaré plot of chaotic field 
in chaotic coordinates 

     phase-space is partitioned into (1)   regular (“irrational”) regions      with “good flux surfaces”, temperature gradients 

                                                  and (2) irregular (“   rational”) regions      with islands and chaos, flat profiles 
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Generalized magnetic coordinates for toroidal magnetic fields 

S.R. Hudson, Doctoral Thesis, The Australian National University, 1996 
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new angle coordinate   → old angle coordinate   → 


